Midterm 1 - Review - Problems

Peyam Ryan Tabrizian

Thursday, February 17th, 2011

1 Limits

Problem 1

Find the following limits
(a) $\lim _{x \rightarrow 3} \frac{x^{2}-5 x+6}{x^{2}-9}$
(b) $\lim _{x \rightarrow 3^{-}} \frac{\ln (x)}{x-3}$
(c) $\lim _{x \rightarrow 0^{+}} \frac{(\ln (x))^{2}+1}{(\ln (x))^{2}+3}$
(d) $\lim _{x \rightarrow 0} \sin \left(\frac{\pi|x|}{x}\right)$
(e) $\lim _{x \rightarrow 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$

2 Epsilons and Deltas

Problem 2

Show that the following are true, using $\epsilon-\delta$
(a) $\lim _{x \rightarrow 1} x^{2}-2 x=-1$
(b) $\lim _{x \rightarrow 1} x^{2}+2 x=3$
(c) $\lim _{x \rightarrow 1} x-\frac{1}{x}=0$

3 Intermediate Value Theorem

Problem 3

Show that $2^{x}=x+3$ has at least one solution in $(2,3)$

4 Derivatives

Problem 4

Find the derivatives of the following functions, using the definition of the derivative:
(a) $f(x)=\frac{1}{x^{2}}$
(b) $f(x)=\sqrt{1+2 x}$

Problem 5

Find the equation of the tangent line to the curve $y=x^{4}$ at $(2,16)$ (you may use differentiation rules here!)

5 Functions-Stuff! (Chapter 1)

Problem 6

Find the domain of $f(x)=\sqrt{x^{2}-3 x-4}$

Problem 7

Find the inverse of $f(x)=1+e^{x^{3}}$

Problem 8

Sketch the graph of the following function and say at which points it is continuous:

$$
f(x)=\left\{\begin{array}{cc}
x^{2} & \text { if } x \leq 1 \\
\frac{1}{x} & \text { if } 1<x<3 \\
\frac{1}{2}+\sqrt{x-3} & \text { if } x \geq 3
\end{array}\right.
$$

