Midterm 1 - Review - Problems

Peyam Ryan Tabrizian

Thursday, February 17th, 2011

1 Limits

Problem 1

Find the following limits

- (a) $\lim_{x \to 3} \frac{x^2 5x + 6}{x^2 9}$
- (b) $\lim_{x\to 3^{-}} \frac{\ln(x)}{x-3}$
- (c) $\lim_{x\to 0^+} \frac{(\ln(x))^2 + 1}{(\ln(x))^2 + 3}$
- (d) $\lim_{x \to 0} \sin\left(\frac{\pi|x|}{x}\right)$

(e)
$$\lim_{x\to 3} \frac{x-3}{\sqrt{x}-\sqrt{3}}$$

2 Epsilons and Deltas

Problem 2

Show that the following are true, using $\epsilon-\delta$

- (a) $\lim_{x \to 1} x^2 2x = -1$
- (b) $\lim_{x \to 1} x^2 + 2x = 3$
- (c) $\lim_{x \to 1} x \frac{1}{x} = 0$

3 Intermediate Value Theorem

Problem 3

Show that $2^x = x + 3$ has at least one solution in (2,3)

4 Derivatives

Problem 4

Find the derivatives of the following functions, using the **definition** of the derivative:

- (a) $f(x) = \frac{1}{x^2}$
- (b) $f(x) = \sqrt{1+2x}$

Problem 5

Find the equation of the tangent line to the curve $y = x^4$ at (2,16) (you may use differentiation rules here!)

5 Functions-Stuff! (Chapter 1)

Problem 6

Find the domain of $f(x) = \sqrt{x^2 - 3x - 4}$

Problem 7

Find the inverse of $f(x) = 1 + e^{x^3}$

Problem 8

Sketch the graph of the following function and say at which points it is continuous:

$$f(x) = \begin{cases} x^2 & \text{if } x \le 1\\ \frac{1}{x} & \text{if } 1 < x < 3\\ \frac{1}{2} + \sqrt{x - 3} & \text{if } x \ge 3 \end{cases}$$